Please use this identifier to cite or link to this item:
http://hdl.handle.net/11189/3857
Title: | Risk predictive modelling for diabetes and cardiovascular disease | Authors: | Kengne, Andre Pascal Masconi, Katya L. Mbanya, Vivian Nchanchou Lekoubou, Alain Echouffo-Tcheugui, Justin Basile |
Keywords: | Clinical prediction model;Absolute risk;Diabetes mellitus;Cardiovascular disease,;Calibration;Discrimination;Reclassification;Validation | Issue Date: | 2013 | Publisher: | Informa healthcare | Abstract: | Absolute risk models or clinical prediction models have been incorporated in guidelines, and are increasingly advocated as tools to assist risk stratification and guide prevention and treatments decisions relating to common health conditions such as cardiovascular disease (CVD) and diabetes mellitus. We have reviewed the historical development and principles of prediction research, including their statistical underpinning, as well as implications for routine practice, with a focus on predictive modelling for CVD and diabetes. Predictive modelling for CVD risk, which has developed over the last five decades, has been largely influenced by the Framingham Heart Study investigators, while it is only 20 years ago that similar efforts were started in the field of diabetes. Identification of predictive factors is an important preliminary step which provides the knowledge base on potential predictors to be tested for inclusion during the statistical derivation of the final model. The derived models must then be tested both on the development sample (internal validation) and on other populations in different settings (external validation). Updating procedures (e.g. recalibration) should be used to improve the performance of models that fail the tests of external validation. Ultimately, the effect of introducing validated models in routine practice on the process and outcomes of care as well as its cost-effectiveness should be tested in impact studies before wide dissemination of models beyond the research context. Several predictions models have been developed for CVD or diabetes, but very few have been externally validated or tested in impact studies, and their comparative performance has yet to be fully assessed. A shift of focus from developing new CVD or diabetes prediction models to validating the existing ones will improve their adoption in routine practice. | URI: | http://dx.doi.org/10.3109/10408363.2013.853025 http://hdl.handle.net/11189/3857 |
Appears in Collections: | HWSci - Journal Articles (DHET subsidised) |
Show full item record
This item is licensed under a Creative Commons License