Please use this identifier to cite or link to this item: http://hdl.handle.net/11189/6479
Title: Phytostabilization of metals by indigenous riparian vegetation
Authors: Schachtschneider, Klaudia 
Chamier, Jessica 
Somerset, Vernon 
Keywords: Riparian vegetation;Heavy metals;Acid mine drainage;Phytostabilization;Bioaccumulation
Issue Date: 2017
Publisher: Water SA
Journal: African Journals Online (AJOL) 
Abstract: Given the increasing pressure of man-made activities on riparian zones, the capacity of the riparian vegetation along the Upper Olifants River, South Africa, to phytoextract and phytostabilize aluminium (Al), manganese (Mn) and iron (Fe) from the soil was investigated. The aim of the study was to gain better understanding of the capacity of indigenous vegetation in riparian zones to immobilize metals in the soil, thereby improving river water quality and ecosystem services. Seven commonly-occurring pollution-tolerant riparian plant species were evaluated to establish their potential as bioaccumulators for Fe, Al and Mn. Species included: Cyperus haspan, Schoenoplectus corymbosus, Typha capensis, Phragmites australis, Cynodon dactylon, Cyperus marginatus and Juncus effusus, which were sampled in five riparian areas in the Upper Olifants catchment. The bioconcentration factor (BCF) for Mn was > 1 for all species investigated with a maximum of 5 for Typha capensis, which also showed the highest accumulation of Al (10.26) and Fe (7.03). The remaining species presented with Al and Fe BCF between 0.11 and 2.00, with minimal transfer from root to shoot. When measured against an ideal hypothetical buffer zone, the buffer zones under investigation varied between intact and severely compromised. Intact riparian zones showed elevated metal concentrations in the soil, yet significantly lower concentrations in the river water compared to areas with insufficient vegetative cover. A polluted riparian area overgrown by P. australis effectively phytoextracted 204 960 g/m2 Al, 204 400 g/m2 Fe and 27 887 g/m2 Mn. The two indigenous Cyperus spp. were not ideal for metal immobilization with low bioaccumulation and transfer factors as well as low biomass. High biomass and Al, Fe and Mn phytostabilizing species: P. australis, T. capensis, S. corymbosus and J. effusus, should be considered in the rehabilitation of South African buffer areas.
URI: http://hdl.handle.net/11189/6479
ISSN: 1816-7950
DOI: http://dx.doi.org/10.4314/wsa.v43i1.12
Appears in Collections:Appsc - Conference Proceedings

Files in This Item:
File Description SizeFormat 
Phytostabilization_of_metals_by_indigenous_riparia.pdfConference proceedings1.38 MBAdobe PDFView/Open
Show full item record

Page view(s)

19
checked on Jun 26, 2019

Download(s)

1
checked on Jun 26, 2019

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons