The ground plant material was exhaustively extracted using methanol, acetone and water separately for 72 hrs. These
B. abyssinica.

roots, using the Brine shrimp lethality model.

and

T. acutiloba

B. abyssinica

In South African traditional medicine, some are plants known to combat pediatric diseases and are commonly used by traditional

2012). Toxicity of medicinal

T. acutiloba

B. abyssinica

leaves

All the tested extracts showed that the concentration is directly proportional to death of brine shrimps. Fifty percent lethality (LC

Bulbine abyssinica

B. abyssinica

4

and

nauplii (larva) were transferred into each sample vial and filtered brine solution was added to make 5 ml. The nauplii were counted

3*

and

T. acutiloba

B. abyssinica

larvae showed strong cytotoxicity respectively.

are reported to be used to control colic (umoya in vernacular Xhosa) in children. It is indigenous to the

kambiziL@cput.ac.za

T. acutiloba

Artemisia salina

(25

nomenclature followed the international code of botanical nomenclature. The plant parts were chopped into small pieces; air dried at room temperature

macroscopically in the stem of the pipette against a lighted background. A drop of dry yeast suspension was added as food to each vial. Probit analysis

was used to determine the concentration at which lethality to brine shrimp represents 50 % (LC50).

Results: All the tested extracts showed that the concentration is directly proportional to death of brine shrimps. Fifty percent lethality (LC50) of the

tested crude extract ranged between 4.1 and 4.6 µg/ml with methanol extract of B. abyssinica being the lowest and T. acutiloba the highest.

Conclusion: This study revealed that 100% of plant crude extracts screened for activity against Artemisia salina larvae showed strong cytotoxicity

below 10 µg/ml and plant species with LC50 values < 1000 µg/ml may not make good paediatric remedies due to their inherent toxicity.

Key words: Medicinal plants, traditional pediatrics, cytotoxicity

Introduction

Considering the vast use of folk medicine by local communities worldwide, the need for the evaluation of intrinsic toxicity of plant extracts

A.C) under shade and pulverized using a laboratory mill (Christy & Nor-ris Ltd., England). The ground plant material was exhaustively extracted

Study area

The ethnobotanical information was gathered around villages of Mount Frere District of the Eastern Cape Province of South Africa. The

study area falls within the following co-ordinates: Mount Frere (30°55′S 28°59′E).

Plant Materials

The plant samples were collected in August 2011 from Mt Frere district in South Africa (30°55′S 28°59′E) based on interviews of

ethnopharmacological uses within local communities and traditional health practitioners. The collected species were T. acutiloba and B. abyssinica.

Information gathered included part of the plant used and the method of preparation of the herbal anti-malarial remedies. The plants were identified by
taxonomists at the Walter Sisulu University Herbarium where voucher specimens (Mnengi 2011/1 and Mnengi 2011/2) were deposited. Species

nomenclature followed the international code of botanical nomenclature. The plant parts were chopped into small pieces; air dried at room temperature

(25°C) under shade and pulverized using a laboratory mill (Christy & Nor-ris Ltd., England). The ground plant material was exhaustively extracted

1Doris Mnengi,2Abidemi Kappo,3Learnmore Kambizi, 4Motebang Nakin.

2Department of Botany, School of Applied & Environmental Sciences, Walter Sisulu University, Mthatha 5117.

3Department of Biochemistry and Microbiology University of Zululand Private Bag X1001 KwaDlangezwa 3668.

2Department of Horticulture, Cape Peninsula University of Technology, Cape Town 7535. 4Risk and Vulnerability

Assessment Centre, Walter Sisulu University, Mthatha 5117

*E-mail: kambiziL@cput.ac.za

Abstract

Background: In South African traditional medicine, some are plants known to combat pediatric diseases and are commonly used by traditional

healers. The aim was to evaluate cytotoxicity effects of plants.

Materials and methods: The ground plant material was exhaustively extracted using methanol, acetone and water separately for 72 hrs. These

organic solvents were removed from filtrates using a rotavapour. Stock solutions were prepared at 40 mg/ml Dimethyl sulfoxide (DMSO) and test

solutions were transferred into vials and 10 brine shrimps introduced in each. The number of dead shrimps was counted to ascertain toxicity. Ten A.
salina nauplii (larva) were transferred into each sample vial and filtered brine solution was added to make 5 ml. The nauplii were counted

Five percent lethality (LC50) of the

tested crude extract ranged between 4.1 and 4.6 µg/ml with methanol extract of B. abyssinica being the lowest and T. acutiloba the highest.

The leaves of T. acutiloba

3

and

B. abyssinica

are believed to have potential healing properties such as the

treatment of sickness in children (Plate) and to combat heart diseases in adults. These plants have been screened for their antimicrobial properties but

little or no information is available on the screening of the leaves and roots of T. acutiloba and B. abyssinica respectively.

This study aimed at screening the crude extracts of T. acutiloba leaves and B. abyssinica roots, using the Brine shrimp lethality model. These plants are perceived to have healing properties and considered to be harmless by folks in the Mount Frere District of the Eastern Cape.

Materials and Methods

Study area

The ethnobotanical information was gathered around villages of Mount Frere District of the Eastern Cape Province of South Africa. The

study area falls within the following co-ordinates: Mount Frere (30°55′S 28°59′E).
Dimethyl sulfoxide (DMSO) in vivo T. acutiloba can be used at high concentrations. B. abyssinica and T. acutiloba have been screened for their safety and effectiveness but no published information is available and toxicological Determinations. B. abyssinica and T. acutiloba are one and the same plant. methanol extract being the lowest and assays T. violacea and their findings revealed that the oil of this plant had cytotoxic properties which were also concentration dependent. Though herbal larvae showed strong cytotoxicity because they demonstrated activity profile of these crude extracts are recommended. novel scaffolds in the search for new drugs against various diseases that affect infants. Further investigations into the drug discovery programs. Our findings suggest that future applications from this study calls for further work aimed at isolating the cytotoxic compounds responsible for the observed activity. These compounds could serve as use of herbal remedies the evaluation of medicinal plants safety and quality assurance should be an immediate response by researchers. Results and discussion All the tested extracts showed that the concentration was directly correlated to the death of brine shrimps. The death of brine shrimp nauplii initially showed increase with concentration and reached its optimal capacity which means the number of brine shrimp dying begins to decrease at high concentrations (Fig 1 & 5). This implies that methanol and water extracts of B. abyssinica and T. acutiloba can be used at high concentrations. However, Brine shrimp lethality gradually increases with concentration in water and acetone extracts of B. abyssinica and in methanol extract of T. acutiloba, which demonstrates that higher concentrations of these extracts are harmful (Figure 2, 3, and 4). Fifty percent lethality (LC\textsubscript{50}) of the tested crude extracts ranged between 4.1 and 4.6 μg/ml with B. abyssinica methanol extract being the lowest and T. acutiloba the highest. This indicates that 4.1 μg/ml of methanol extract of B. abyssinica was required to kill fifty percentage of the brine shrimp nauplii (Artemisia salina L.). According to Nguta et al., 2012; Peteros and Yu, 2010; the agent is regarded as cytotoxic if its probit value is less than 10 000 μg/ml. The findings of this study showed that 100% of plant crude extracts screened against Artemisia salina larvae showed strong cytotoxicity because they demonstrated activity below 10 μg/ml. The variation in BSLA results may be due to the difference in the amounts and kinds of cytotoxic substances present in the crude extracts. Generally, these results correspond with the findings by Nguta et al., 2012; Peteros and Yu (2010), which revealed that medicinal plants' toxicity is concentration dependent (Figures 1-5).

The roots of B. abyssinica and T. acutiloba have been screened for their safety and effectiveness but no published information is available on screening of leaves which are used for various diseases especially in infants. Olorunnisola et al., (2011) screened essential oils of rhizome of T. acutiloba and their findings revealed that the oil of this plant had cytotoxic properties which were also concentration dependent. Though herbal remedies play a major role as alternative medication for various ailments there is still lack of appropriate dosage and safety in prolonged usage. It has been mentioned by Saad et al., (2006) that though medicinal plants can have pharmaceutical activity, they are also responsible for unexpected toxicity. It is, therefore, of paramount importance to evaluate cytotoxic and toxicological properties of plants used for traditional pediatrics because the immune system of infants is still immature and under-developed.

The results of this study revealed that traditional healers in Mt Frere prescribe the oral administration of infusions and decoctions to infants with no upper limit of the dosage at a given time. Moreover the medication is administered until the ailment is perceived to be treated. The use of herbal estimates and prolonged intake of the medication every time the patient feels pain could lead to cell damages. There is folk belief that anything herbal remedies are used as cells in the experiment and as the concentration increased the death of organism also increased in all extracts. Lethality test by brine shrimp bioassay is not only used to ascertain dangerous properties of the plants to human cells but it also help in the development of antitumor and pesticidal agents (Peter and Yu, 2010). According to Manilal et al., (2009) cytotoxic properties of plant materials might be due to the presence of antitumor compounds. Extracts from natural product sources have served (and are still serving) as a valuable source in many drug discovery programs. Our findings suggest that future applications from T. acutiloba and B. abyssinica crude extracts could serve as potent pesticides and antimicrobial agents. Considering the global climate change, effects on our livelihoods and rapid increase in disease spreading as well as use of herbal remedies the evaluation of medicinal plants safety and quality assurance should be an immediate response by researchers. Results from this study indicate that while plant species with LC\textsubscript{50} values < 1000 μg/ml may not make good paediatric remedies due to their inherent toxicity, this study calls for further work aimed at isolating the cytotoxic compounds responsible for the observed activity. These compounds could serve as novel scaffolds in the search for new drugs against various diseases that affect infants. Further investigations into the in vivo assays and toxicological profile of these crude extracts are recommended.

Bioassay of A. Salina

For toxicity tests, ten A. salina nauplii (larva) were transferred into each sample vial using 230 mm disposable glass Pasteur pipettes (Ref. D812) (Poulten & Graf Ltd, Barking, UK) and filtered brine solution was added to make 5 mL. The nauplii were counted macroscopically in the stem of the pipette at a lighted background. A drop of dry yeast suspension (Red star) (3 mg in 5 mL artificial sea water) was added as food to each vial. All the vials were maintained under illumination. The surviving nauplii were counted with the aid of a 3x magnifying glass, after 48 hours, and the percentage of deaths at the three dose levels and control were determined. In cases where control deaths occurred, the data was corrected using Abbott’s formula (Pelka et al., 2000) as follows: % deaths = [(Test-control)/control x 100].

LC\textsubscript{50} Determinations

Probit analysis by Finney (1971) was used to determine the concentration at which lethality to brine shrimp represents 50 % (LC\textsubscript{50}). LC\textsubscript{50} (effective dose needed to kill 50% of shrimp larvae) values less than 100 ppm (or 100 μg/mL) were considered significant as described by Peter and Yu 2010.

Preparation of test concentrations

Stock solutions were prepared from each plant at 40 mg/ml Dimethyl sulfoxide (DMS0). Test solutions at appropriate amounts (4 μL, 40 μL, and 400 μL for 10 μg/mL, 100 μg/mL, and 1000 μg/mL respectively) were transferred into vials and 10 brine shrimps introduced in each (3 vials for each dose and 1 negative control). The vials were left under illumination for 48 hours. Thereafter, the number of dead shrimps was counted to ascertain toxicity.
Figure 1: Brine Shrimp Lethality on methanol extract of *B. abyssinica*

\[y = 15x \]
\[R^2 = 0.8929 \]

Figure 2: Brine Shrimp Lethality on water extract of *B. abyssinica*

\[y = 20x - 2.3333 \]
\[R^2 = 0.9231 \]

Figure 3: Brine Shrimp Lethality on acetone extract of *B. abyssinica*

\[y = 20x - 6 \]
\[R^2 = 1 \]
Figure 4: Brine Shrimp Lethality on methanol extract of T. acutiloba

Figure 5: Brine Shrimp Lethality on water extract of T. acutiloba

Acknowledgements

The authors are grateful to the following: “National Research Foundation (NRF) & Department of Science and Technology (DST)”, “Local people of Umzimvubu Local Municipality, Eastern Cape Province”, “Applied and Environmental Microbiology Group (AEMREG)”, and the “Department of Biochemistry and Microbiology, University of Fort Hare”.

References