Campus Carbon Neutrality as an Interdisciplinary Pedagogical Tool

Keynote Session: 14h00 – 14h45

Dr. Matthew Kuperus Heun (presenter)
(Mechanical Engineering, CPUT & Engineering, Calvin College)

Dr. David Warners
(Biology, Calvin College)

Dr. Henry DeVries
(V.P. for Administration, Finance, and IT, Calvin College)

Domestic Use of Energy Conference 2009
Cape Peninsula University of Technology
15 April 2009
Topics

- Setting the context
- Calvin College Carbon Neutrality (CCCN) project
- Carbon Emissions Trading Simulation (CETS)
- Surprises and Lessons Learned
- Conclusion
Setting the Context

- Background
- Sustainability
- Institution
- Liberal Arts
- Pedagogy
Earth’s Carbon Cycle

- Many Emission Sources
- Many Sequestration Sinks
- Total Human Emissions 7.1 GtC/yr
- Net: 3.2 GtC/yr human emissions remain in the atmosphere

http://earthobservatory.nasa.gov/Library/CarbonCycle/carbon_cycle4.html
Keeling Curve

CO₂ (parts per million)

Year

Mauna Loa Observatory

2.2 ppm/yr
Global Warming

- Fossil fuel combustion puts extra CO_2 (a greenhouse gas) into the atmosphere

- \[\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} \]
Carbon Timeline

- 1700s: 280 ppm
- 1974: 330 ppm (~half of extra carbon)
- 2008: 389 ppm
- 2059: 500 ppm (at 2.2 ppm/yr)
 “Dangerous Anthropogenic Interference”
Definition

- Climate change
 - Long-term significant change in the expected patterns of average weather caused by human activities
- Negative consequences
 - Sea level rise
 - Altered vegetation patterns
 - Desertification
A Very “Hot” Topic

http://www.ipcc.ch
Definition

- Sustainable: using only your fair share of natural resources
 - Consider spatial distribution of resources
 - Consider temporal distribution of resources
Sustainability Context

• Grand Rapids, MI
 • Most LEED certified buildings per capita
 • Community Sustainability Partnership
 • UN University Regional Center for Expertise in Education for Sustainable Development (2006)

• Calvin Statement on Sustainability (2007)
 • Goal: “To raise the level of environmental and sustainability discussions in the campus community.”
 • Covers 13 areas of institutional/community life
Institutional Context

• Comprehensive **Liberal arts** institution

• Founded 1876 by Calvinist immigrants

• 4000 students

• ENGR Department

• Phys. Plant
Liberal Arts Context

• “Big questions are the lifeblood of liberal arts education with its emphasis ... [o]n the connections between the disciplines. Liberal arts education, at its best, goes beyond simply knowing ... and acquiring competence in some field.”
 (Curry, Heffner, and Joldersma, 2007)

• Knowing → Responsibility

• Competence → Caring
Definition

• Pedagogical: of or related to teaching
Pedagogical Context

• Sustainability commitments are a good fit for Service Learning

• Calvin Service Learning Center

• Calvin Environmental Assessment Program (CEAP)
 • Integrate sciences with service learning
 • Invigorate curriculum
 • Embrace multiple intelligences/learning styles
 • Provide service to institution
Learning at Calvin

Academics (Classes)

Service Learning

Academically-based Service Learning
CEAP
BIOL 357
ENGR 333

Community-based Service Learning

Student Life
Context Summary

• Sustainability makes sense in this context
 • Climate Change is a big question and “hot” topic
 • suitable for liberal arts inquiry at Calvin College
 • using existing pedagogical resources.

• What in your context provides impetus for sustainability activities?
How Engage Students and Organization?

- Given the above context (yours will be different), how one engage the institution on the issue of climate change caused by global warming?
- Understand the context and use the available resources
 - An institution that respects and responds to service-learning
 - Free students
Calvin College Carbon Neutrality Project
The Question

• What would it take to make Calvin College carbon neutral?

• This is a “Grand Challenge” issue that will impact students over their lifetimes on many different levels.

• Amenable to service learning.

• BIOL and ENGR students spent a semester working toward an answer.
Pedagogical Design

Activities
- Traditional Lectures
- CCCN
- CETS

Levels of Inquiry
- Global
- Institutional
- Personal

Arrows:
- A
- B
- C
- D
- E
- F
- G
Calvin College Carbon Neutrality (CCCN) Project
(Institutional Level of Inquiry)
Group Formation

- Students aligned groups with Statement on Sustainability
 - Energy Use and Purchasing
 - Land Use and Waste Water Management
 - Recycling and Solid Waste Management
 - Construction and Renovation
 - Transportation

- Students “applied” for a group by submitting a resume (C.V.) and cover letter

Professors formed groups
Carbon Footprint
Definitions

• Carbon footprint: inventory of carbon emissions and sequestration by an organization

• Carbon neutral: when CO$_2$ emissions and sequestration are equal

• Carbon negative: when CO$_2$ sequestration exceeds emissions

http://mingled.co.uk/designs/carbonfootprint.htm
Calvin College Carbon Emissions

- Building Energy Use: 22,781 tCO$_2$/year
- Transport: 1,756 tCO$_2$/year
- Land: 1,134 tCO$_2$/year
- Construction: 258 tCO$_2$/year
- Waste: 42,000 tCO$_2$/year

(Data from CCCN Project)
Calvin College Emissions Details

- Building Energy Use: 42,000 tCO₂e/year
- Transport: 22,781 tCO₂e/year
- Other: 14,839 tCO₂e/year
- Commuting: 5,852 tCO₂e/year
- Air: 2,090 tCO₂e/year
- Service Vehicles: 10,080 tCO₂e/year
- Electricity: 31,920 tCO₂e/year

(Data from CCCN Project)
Calvin College Sequestration

Metric Tons CO₂ Sequestered/year (Data from CCCN Project)

- Maintained Lawn: 21.7 metric tons
- Shrub: 9.4 metric tons
- Mature Forest: 8.2 metric tons
- Edge: 5.8 metric tons
- Prairie Grassland: 10.1 metric tons
Calvin College Carbon Footprint

Emission
67,929 tCO₂/year

Sequestration
55 tCO₂/year

(Data from CCCN Project)
Calvin’s Carbon Footprint

Emission
- Transport: 22,781 tCO₂/year
- Building Energy: 42,000 tCO₂/year
- Other: 3,148 tCO₂/year

Total Emission: 67,929 tCO₂/year

(Data from CCCN Project)

Sequestration: 55 tCO₂/year
Carbon Neutrality Action Plan
Analysis of Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Cost</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly EV gift for students</td>
<td>$240,000.00</td>
<td>$17,454.55</td>
</tr>
<tr>
<td>Calvin owned bikes</td>
<td>$80,000.00</td>
<td>$7,575.76</td>
</tr>
<tr>
<td>Adding Lake Dr. Bike lane and path</td>
<td>$3,000.00</td>
<td>$2,385.38</td>
</tr>
<tr>
<td>Full Rapid Subsidization</td>
<td>$21,000.00</td>
<td>$1,407.00</td>
</tr>
<tr>
<td>Renewable Energy Production</td>
<td>$94,492.00</td>
<td>$358.53</td>
</tr>
<tr>
<td>Green Energy purchase*</td>
<td>$820,000.00</td>
<td>$76.00</td>
</tr>
<tr>
<td>Carbon Offset purchase</td>
<td>$724,000.00</td>
<td>$37.00</td>
</tr>
<tr>
<td>Temperature Drop</td>
<td>$172,000,000</td>
<td>$(48.00)</td>
</tr>
<tr>
<td>Energy commutes with increased miles</td>
<td>$83,000.00</td>
<td>$(122.58)</td>
</tr>
</tbody>
</table>

*Green energy is not completely carbon-neutral.

http://www.germes-online.com/catalog/26/12/876/121739/sell_glass_tube_thermometer.html
Action Plan

- Increase awareness
- $ savings from efficiency gains

- Renewable generation
- Purchase offsets

CCCN Impacts

• First footprint assessment

• First time administration envisioned the difficulty of carbon neutrality

• Jordan: “I now believe that mere technical advances cannot alter the course on which we are heading. I believe that if there is any hope for achieving carbon neutrality, major lifestyle changes need to be made.”
Carbon Emissions Trading Simulation (CETS) (Personal Level of Inquiry)
Definitions

• Carbon credit: a permit to emit CO$_2$
• Carbon market: a place to trade carbon credits
Carbon Emissions Trading Simulation (CETS)

- Model cap-and-trade carbon market
- Daily activities assigned point values
- Students (and profs) track behaviors
- Emission credits traded on a “market”
- Market winners fund pizza party
- v1: activity-based: generated by profs
- v2: students applied CCCN learning to develop new (mass based) credit values
<table>
<thead>
<tr>
<th>Credits</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ride in a car on a one-way trip anywhere: to campus, to the store, home, etc. (Two people in same car retires one credit per person.)</td>
</tr>
<tr>
<td>1</td>
<td>Watch TV for an hour. (Two people watching the same TV retires 0.5 credits per person.)</td>
</tr>
<tr>
<td>6</td>
<td>Operate air-conditioning in your house for a day. (No pro-rating for housemates.)</td>
</tr>
<tr>
<td>4</td>
<td>Operate the furnace in your house for a day. (No pro-rating for housemates.)</td>
</tr>
<tr>
<td>1</td>
<td>Eat a piece of fruit grown outside Michigan</td>
</tr>
<tr>
<td>1</td>
<td>Use or leave a computer on for 2 hours</td>
</tr>
<tr>
<td>Credits</td>
<td>Activity</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>40</td>
<td>Consume 1 gallon of unleaded gas in a car</td>
</tr>
<tr>
<td>1</td>
<td>Watch TV (2 hr)</td>
</tr>
<tr>
<td>1</td>
<td>Play video game (1 hr. includes having TV on)</td>
</tr>
<tr>
<td>80</td>
<td>Operate AC (1 day)</td>
</tr>
<tr>
<td>40</td>
<td>Operate Furnace (1 day)</td>
</tr>
<tr>
<td>4</td>
<td>Eat a piece of fruit from outside Michigan</td>
</tr>
<tr>
<td>40</td>
<td>Eat meat (1 lb beef)</td>
</tr>
<tr>
<td>1</td>
<td>Use or leave a computer on (2 hr)</td>
</tr>
<tr>
<td>12</td>
<td>50 lbs trash</td>
</tr>
<tr>
<td>14</td>
<td>Machine dry clothes</td>
</tr>
<tr>
<td>-10</td>
<td>Install fluorescent light bulbs (saved per light bulb)</td>
</tr>
<tr>
<td>100</td>
<td>Plant a tree (2 ft tall) linear scale: 1 ft = -50 credits</td>
</tr>
</tbody>
</table>
CETS v2 Results

Credits Retired

- Carbon Credits on the y-axis.
- Date on the x-axis.
- A trend line showing an increase over time.

Credits Sold

- Carbon Credits on the y-axis.
- Date on the x-axis.
- A trend line showing a peak at a specific date with fluctuations around it.
Market Behaviors

- Panic (end of v2)
- Speculation (may I buy now and sell later?)
- Insider trading (professor)
- Claims of injustice (commuters)
- Behavior awareness (“Accounting systems change behavior”)
CETS Impacts

- Walked, ran, biked, and carpooled more
- Watched movies on their computer instead TV
- Watched TV with friends to split the credits
- Delayed laundry until larger loads were possible
- Organized tree planting activities
- Chose to eat locally-grown fruit when possible
Surprises and Lessons Learned
Surprises

- Flawed expectations
 - Carbon neutrality would be easy
 - Carbon neutrality could be achieved by planting more trees
- Disciplinary biases already deeply entrenched among students
Challenges and Joys

• Getting biologists and engineers to work together!
• Inter-group communication (units)
• Managing student frustration levels on an open-ended project
• Seeing “weaker” students excel
• Learning with students
• Moving from assignment to responsibility
From Assignment to Responsibility

• Student names were attached to the project

• Results were very public
 • Poster session
 • Campus-wide seminar
 • Final report posted online

• Big project that attracted attention

• Administrative involvement
Institutional Effects

• “Creation Care” res. floor: Jess is resident assistant

• Ecological mitigation activities: Peter employed as project manager

• Led to
 • “Focus the Nation” activities
 • First-ever Sustainability Summit
 • Sustainability Coordinator faculty release time
 • Calvin Energy Efficiency Fund
Lessons Learned

• Christina: “Engineers viewed the situation as a problem that we are to find a solution for. The biologists viewed it as a learning opportunity. [Biologists] viewed it as an opportunity to get the public to see the effect they are having on the environment. I think both views are important.”

• Adebo: “Through cooperation between classes, I realized more that reducing carbon emissions will require an effort from all fields, not just engineering… The lesson I learned from [the biologists] is that coming up with a solution to a problem does not entirely depend on calculations. In my opinion, the biologists came up with more creative ideas on how to make Calvin’s campus carbon neutral.”
Conclusion
Conclusion

• Campus carbon neutrality is a potent educational tool

• Pedagogy: Provided a interdisciplinary science division service learning opportunity for students to engage a “grand challenge” issue on several levels of inquiry.

• Sustainability: Helped institution to envision what a sustainable future might entail.
Acknowledgements

- Students of BIOL354 and ENGR333
- Paul Pennock, Physical Plant
- Chuck Holwerda, Electronics Shop Technician
Further Information

- Carbon Neutrality Report
 http://www.calvin.edu/~mkh2

- Statement on Sustainability
 http://www.calvin.edu/admin/provost/environmental/sustainabilitystatement.html